Semi-Nonparametric Methods for Detecting Latent Non-normality: A Fusion of Latent Trait and Ordered Latent Class Modeling.
نویسندگان
چکیده
Ordered latent class analysis (OLCA) can be used to approximate unidimensional latent distributions. The main objective of this study is to evaluate the method of OLCA in detecting non-normality of an unobserved continuous variable (i.e., a common factor) used to explain the covariation between dichotomous item-level responses. Using simulation, we compared a model in which probabilities of class membership were estimated to a restricted submodel in which class memberships were fixed to normal Gauss-Hermite quadrature values. Our results indicate that the likelihood ratio statistic follows a predictable chi-square distribution for a wide range of sample sizes (N = 500-12,000) and test instrument characteristics, and has reasonable power to detect non-normality in cases of moderate effect sizes. Furthermore, under situations of large sample sizes, large numbers of items, or centrally located item difficulties, simulations suggest that it may be possible to describe the shape of latent trait distributions. Application to data on the symptoms of major depression, assessed in the National Comorbidity Survey, suggests that the latent trait does not depart from normality in men but does so to a small but significant extent in women.
منابع مشابه
An application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملThe Comparison of Two Models for Evaluation of Pre-internship Comprehensive Test: Classical and Latent Trait
Introduction: Despite the widespread use of pre-internship comprehensive test and its importance in medical students’ assessment, there is a paucity of the studies that can provide a systematic psychometric analysis of the items of this test. Thus, the present study sought to assess March 2011 pre-internship test using classical and latent trait models and compare their results. Methods: In th...
متن کاملStatistical Modeling of Expert Ratings on Medical Treatment Appropriateness
This article uses latent structure analysis to model ordered category ratings by multiple experts on the appropriateness of indications for the medical procedure carotid endarterectomy. The statistical method used is a form of located latent class analysis, which combines elements of latent class and latent trait analysis. It assumes that treatment indications fall into distinct latent classes,...
متن کاملClustering and combining pattern of metabolic syndrome components among Iranian population with latent class analysis
Background: Metabolic syndrome (MetS), a combination of coronary heart disease and diabetes mellitus risk factor, refer to one of the most challenging public health issues in worldwide. The aim of this study was to identify the subgroups of participants in a study on the basis of MetS components. Methods: The cross-sectional study took place in the districts related to Teh...
متن کاملBayesian rv1ethods for Partial Stochastic Orderings
We discuss two methods of making nonparametric Bayesian inference on probability measures subject to a partial stochastic ordering. The first method involves a nonparametric prior for a measure on partially ordered latent observations, the second involves rejection sampling. Computational approaches are discussed for each method, and interpretations of prior and posterior information are discus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multivariate behavioral research
دوره 41 4 شماره
صفحات -
تاریخ انتشار 2006